Background Image

References:

Pinterest, 2016. Al Brain. Image. Pinterest. Available from: https://www.pinterest.com/pin/112378953182466339/ [Accessed 15 May 2017].

Unreal Al Tools

References:

Broder, D., 2014. Blackboard Documentation. Unreal Engine Formums. 04 March 2014. Available from:

https://forums.unrealengine.com/showthread.php?2004-Blackboard-Documentation [Accessed 11 May 2017].

Epic Games, 2017. How Unreal Engine 4 Behavior Trees Differ. Epic Games Website, Available from:

https://docs.unrealengine.com/latest/INT/Engine/Al/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html [Accessed 4 May 2017].

Epic Games, 2017. Behavior Trees Nodes Reference. Epic Games Website, Available from: https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/NodeReference/index.html [Accessed 5 May 2017].

Notes:

- Behaviour Tree (Thinking)
- Blackboard (Memory)
- Waypoints (Destinations)
- Nav mesh (Traversable area)

Flocking

References:

Reynolds, C., 2001. Boids. Red3D, Available from: http://www.red3d.com/cwr/boids/ [Accessed 8 May 2017].

Notes:

- Craig Reynolds 1986
- Simulation of animal flocking
- Shared mindset
- Collision/Direction/Cohesion
- Area of to be effected by data

Fuzzy Logic

References:

Math Works, 2017. Foundations of Fuzzy Logic. MathWorks, Available from: https://uk.mathworks.com/help/fuzzy/foundations-of-fuzzy-logic.html [Accessed 9 May 2017].

Notes:

Lotfi A Zadeh 1965

- If else statements
- Not true or false.
- Fuzzy sets (Degrees of truths) between logics
- Sense current environment conditions
- Acts on then
- Then can introduce Logical Operators to include OR, NOR etc.

Path Finding

References:

Imms, D., 2012. A* pathfinding algorithm. Growing with the Web. 28 May 2016. Available from: http://www.growingwiththeweb.com/2012/06/a-pathfinding-algorithm.html [Accessed 10 May 2017].

Notes:

- Finds shortest path
- A* uses heuristics to increase speed of algorithm
- Dijkstra examines candidate nodes
- Remembers where it's been so it knows where to go.

Behaviour Trees

References:

Simpson, C., 2014. Behavior trees for AI: How they work. Gamasutra. 17 June 2014. Available from:

http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_Al_How_they_work.php [Accessed 5 May 2017].

Mars, C., 2015. BT 101 - Behaviour Tree Basics. Craft AI. 24 June 2015. Available from: http://www.craft.ai/blog/bt-101-behavior-trees-grammar-basics/ [Accessed 2 May 2017].

Colledanchise, M. and Ogren, P., 2016. How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the Subsumption Architecture and Decision Trees. TRANSACTIONS ON ROBOTICS, Available from: http://michelecolledanchise.com/tro16colledanchise.pdf [Accessed 2 May 2017].

Pereira, R., 2014. An Introduction to Behavior Trees – Part 3. Artificial Intelligence. 15 August 2014. Available from:

http://blog.renatopp.com/2014/08/15/an-introduction-to-behavior-trees-part-3/ [Accessed 4 May 2017].

Notes:

- Type of Finite state machine
- No Parent = Root
- No child = Leaves
- Branches in between, traversed based on conditions
- Selectors
 - o Any tasks complete
 - o Remaining not carried out

Running when task undergoing

0

- Sequence
 - o All tasks need to be complete
 - o False if any are not complete
 - o Will run in order
- Parallel (task can run in parallel)
- Good for LOD AI

ANN

References:

Tutorials Point, 2017. Artificial Intelligence - Neural Networks. Tutorials point, Available from: https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.ht m

[Accessed 11 May 2017].

Notes:

- Complex implementation
- Works like the human brain
- Uses synapses to compute and send data.
- Input is conditional and environmental variables.
- Will be adjusted by weights.
- Starts off with some "Training" data.
- Works and learns to get the best output.

Sensors

Notes:

- Uses sensors in 3 directions
- Navigates and learns
- Changes weighting of suggested path depending on success
- Will eventually learn the entire track.
- Won't be able to compensate for player at all times.

Finite State Machines

Notes

- Way of controlling AI in deterministic way
- Works like a flow chart
- Randomness introduced by random variables
- Simple method of decision making.
- Decisions are based on input from external environments and internal knowledge.

A1 594 x 841 mm 23.4 x 33.1 in

Key Words:

Blackboard (BB) - Al Memory Behaviour Tree (BT) - "Brain" Data Driven (BB) Event Driven (BT)